Branching capacity and Brownian snake capacity

Abstract:

Branching capacity is a set function introduced in [Zhu 2016], recording hitting probability of a set from afar by a branching random walk. In this talk, we study the continuous counterpart of it, the Brownian snake capacity, and the connection between the two concepts. We define Brownian snake capacity as a Choquet capacity on all bounded Borel set in R d , d ≥ 5, and show that under a mild condition, it is the scaling limit of branching capacity. The talk is based on a joint work with Jean-Francois Delmas and Yueyun Hu.

Speaker:

白天衣,中国科学院数学与应用数学研究院助理研究员, 主要研究方向为分枝随机游走. 2017 年本科毕业于北京大学,2018 年硕士毕业于巴黎第六大学,2021 年博士毕业于巴黎第十三大学,2021-2023 年于上海纽约大学任博士后研究员,2023 年 9 月起于中国科学院任助理研究员.